If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+20X-22500=0
a = 1; b = 20; c = -22500;
Δ = b2-4ac
Δ = 202-4·1·(-22500)
Δ = 90400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{90400}=\sqrt{400*226}=\sqrt{400}*\sqrt{226}=20\sqrt{226}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20\sqrt{226}}{2*1}=\frac{-20-20\sqrt{226}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20\sqrt{226}}{2*1}=\frac{-20+20\sqrt{226}}{2} $
| 5x+5=-6x-3 | | 5x+8=-6x-6 | | 2(3x-4=34 | | (3/4s)-(1/4)=(s/8)+(9/4) | | 4(5-2x)=-72 | | -5(y-2)=6y=-7=4 | | 2-3s=17 | | 2h-7=7 | | x-2=-14* | | 12=4s-4 | | 3z−7=−28 | | {x}{5}x5=25 | | 3r=−12 | | (x+24)/5=4+(x/4) | | t−3=12 | | 18/9=n/3 | | –2q=9−q | | 5n/4=15 | | 3+5c=7+4c | | –2(n+1)=6 | | 2(x+8)2=-20 | | 3g–6(g–8)=42 | | 5(n—2)=45 | | 0=6x+-8 | | -5(-9n+10)+5=-50+14n | | 4x=32x=8 | | 36=0.6x+8 | | 24a-22=-4(1-6a)-3a | | −70=7x | | 6=x8 | | 90=117-x | | 90=114-x |